
M.K. Institute of Computer Studies, Bharuch

F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)

UNIT-5

NOTES
UNIT-5: Queries (Single Table only)

5.1 Using where clause and operators with where clause:

5.1.1 In, between , like, not in, =, !=, >, =, <=, wildcard operators

5.1.2 Order by, Group by, Distinct

5.1.3 AND, OR operators, Exists and not Exists

 5.1.4 Use of Alias

5.2 Constraints (Table level and Attribute Level)

5.2.1 NOT NULL, CHECK, DEFAULT

5.2.2 UNIQUE, Primary Key, Foreign Key

5.2.3 On Delete Cascade

5.3 SQL Functions :

5.3.1 Aggregate Functions: avg(), max(), min(), sum(), count(), first(), last().

5.3.2 Scalar Functions: ucase(), lcase(), round(), mid().

5.4 Creating sequence

5.5 Views :

5.5.1 Creating simple view, updating view, dropping view.

5.5.2 Difference between View and Table.

--

INTRODUCTION TO QUERY

• Database language which is used to create, maintain and retrieve the relational database.

• Query is a way of requesting information from the database. A database query can be either a select query

or an action query.

• Query Processing is the activity performed in extracting data from the database. In query processing, it takes

various steps for fetching the data from the database.

• For example, a manager can perform a query to select the employees who were hired 5 months

ago. The results could be the basis for creating performance evaluations.

• One of several different query languages may be used to perform a range of simple to complex

database queries.

• SQL, the most well-known and widely-used query language, is familiar to most database

administrators (DBAs).

5.1 Using where clause and operators with where clause:

• The WHERE clause is used to filter records.

• Where clause is fetch a particular row or set of rows from a table.

• This clause filters records based on given conditions and only those row(s) comes out as result

that satisfies the condition defined in WHERE clause of the SQL query.

• The SQL WHERE clause is used to filter the results and apply conditions in a SELECT, INSERT,

UPDATE, or DELETE statement

• SQL Where Clause Syntax

SELECT Column_name1, Column_name2, [OR]

FROM Table_name

WHERE Condition;

1. Example - One Condition in the WHERE Clause

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE state = 'California';

There will be 4 records selected. These are the results that you should see:

supplier_id supplier_name city state

200 Google Mountain View California

300 Oracle Redwood City California

700 Dole Food Company Westlake Village California

900 Electronic Arts Redwood City California

2. Example - Two Conditions in the WHERE Clause (AND Condition)

we can use the AND condition in the WHERE clause to specify more than 1 condition that must

be met for the record to be selected.

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers

WHERE favorite_website = 'techonthenet.com' AND customer_id > 6000;

There will be 1 record selected. These are the results that you should see:

customer_id last_name first_name favorite_website

9000 Johnson Derek techonthenet.com

3. Example - Two Conditions in the WHERE Clause (OR Condition)

You can use the OR condition in the WHERE clause to test multiple conditions where the record

is returned if any one of the conditions are met.

In this example, we have a table called products with the following data:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products

WHERE product_name = 'Pear' OR product_name = 'Apple';

There will be 2 records selected. These are the results that you should see:

product_id product_name category_id

1 Pear 50

4 Apple 50

4. Example - Combining AND & OR conditions

You can also combine the AND condition with the OR condition to test more complex

conditions.

Let's use the products table again for this example.

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products

WHERE (product_id > 3 AND category_id = 75) OR (product_name = 'Pear');

There will be 2 records selected. These are the results that you should see:

product_id product_name category_id

1 Pear 50

5 Bread 75

Comparison Operators
Comparison operators are used in the WHERE clause to determine which records to select.

Comparison Operator Description

= Equal

<> Not Equal

Comparison Operator Description

!= Not Equal

> Greater Than

>= Greater Than or Equal

< Less Than

<= Less Than or Equal

IN () Matches a value in a list

NOT Negates a condition

BETWEEN Within a range (inclusive)

IS NULL NULL value

IS NOT NULL Non-NULL value

LIKE Pattern matching with % and _

EXISTS Condition is met if subquery returns at least one row

Example - Equality Operator

In SQL, you can use the = operator to test for equality in a query.

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE supplier_name = 'Microsoft';

There will be 1 record selected. These are the results that you should see:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

Example - Inequality Operator

In SQL, there are two ways to test for inequality in a query.

You can use either the <> or != operator. Both will return the same results.

Let's use the same suppliers table as the previous example.

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

supplier_id supplier_name city state

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE supplier_name <> 'Microsoft';

OR

SELECT * FROM suppliers WHERE supplier_name != 'Microsoft';

There will be 8 records selected. These are the results you should see with either one of the

SQL statements:

supplier_id supplier_name city state

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

Example - Greater Than Operator

You can use the > operator in SQL to test for an expression greater than.

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers WHERE customer_id > 6000;

There will be 3 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

Example - Greater Than or Equal Operator

In SQL, you can use the >= operator to test for an expression greater than or equal to.

Let's use the same customers table as the previous example.

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers WHERE customer_id >= 6000;

There will be 4 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

Example - Less Than Operator

You can use the < operator in SQL to test for an expression less than.

In this example, we have a table called products with the following data:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products WHERE product_id < 5;

There will be 4 records selected. These are the results that you should see:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

Example - Less Than or Equal Operator

In SQL, you can use the <= operator to test for an expression less than or equal to.

Let's use the same products table as the previous example.

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products WHERE product_id <= 5;

There will be 5 records selected. These are the results that you should see:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

IN Condition
The IN condition (sometimes called the IN operator) allows you to easily test if an expression

matches any value in a list of values.

It is used to help reduce the need for multiple OR conditions in a SELECT, INSERT, UPDATE, or

DELETE statement.

Syntax:

 expression IN (value1, value2, value_n);

OR

 expression IN (subquery);

Here, expression : This is a value to test.

value1, value2 ...,value_n: These are the values to test against expression. If any of these values

matches expression, then the IN condition will evaluate to true.

subquery: This is a SELECT statement whose result set will be tested against expression. If any

of these values matches expression, then the IN condition will evaluate to true.

Example - Using the IN Condition with Character Values

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

supplier_id supplier_name city state

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE supplier_name IN ('Microsoft', 'Oracle', 'Flowers Foods');

There will be 3 records selected. These are the results that you should see:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

300 Oracle Redwood City California

800 Flowers Foods Thomasville Georgia

It is equivalent to the following SQL statement:

SELECT * FROM suppliers WHERE

supplier_name = 'Microsoft' OR supplier_name = 'Oracle'

OR supplier_name = 'Flowers Foods';

As you can see, using the IN condition makes the statement easier to read and more efficient

than using multiple OR conditions.

Example - Using the IN Condition with Numeric Values

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers WHERE customer_id IN (5000, 7000, 8000, 9000);

There will be 4 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

5000 Smith Jane digminecraft.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

It is equivalent to the following SQL statement:

SELECT * FROM customers WHERE customer_id = 5000 OR

 customer_id = 7000 OR customer_id = 8000 OR

customer_id = 9000;

Example - Using the IN Condition with the NOT Operator

In this example, we have a table called products with the following data:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products WHERE product_name NOT IN ('Pear', 'Banana', 'Bread');

There will be 4 records selected. These are the results that you should see:

product_id product_name category_id

3 Orange 50

4 Apple 50

6 Sliced Ham 25

7 Kleenex NULL

It is equivalent to the following SQL statement:

SELECT * FROM products WHERE product_name <> 'Pear' AND product_name <> 'Banana'

AND product_name <> 'Bread';

As you can see, the equivalent statement is written using AND conditions instead of OR

conditions because the IN condition is negated.

BETWEEN Condition
The SQL BETWEEN condition allows you to easily test if an expression is within a range of values

(inclusive).

It can be used in a SELECT, INSERT, UPDATE, or DELETE statement.

Syntax:

expression BETWEEN value1 AND value2;

here, expression :A column or calculation.

 value1 and value2 :These values create an inclusive range that expression is compared to.

Note

• The SQL BETWEEN Condition will return the records where expression is within the

range of value1 and value2 (inclusive).

Example

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

supplier_id supplier_name city state

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE supplier_id BETWEEN 300 AND 600;

There will be 4 records selected. These are the results that you should see:

supplier_id supplier_name city state

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

OR

It is equivalent to the following SELECT statement:

SELECT * FROM suppliers WHERE supplier_id >= 300 AND supplier_id <= 600;

Example - Using BETWEEN Condition with Date Values

In this example, we have a table called orders with the following data:

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01

SELECT * FROM orders WHERE order_date

 BETWEEN '2016/04/19' AND '2016/05/01';

There will be 3 records selected. These are the results that you should see:

order_id customer_id order_date

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01

This example would return all records from the orders table where the order_date is between

Apr 19, 2016 and May 1, 2016 (inclusive).

Example - Using NOT Operator with the BETWEEN Condition

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers WHERE customer_id NOT BETWEEN 5000 AND 8000;

There will be 2 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

9000 Johnson Derek techonthenet.com

This would return all rows where the customer_id was NOT between 5000 and 8000, inclusive.

OR

It would be equivalent to the following SELECT statement:

SELECT * FROM customers WHERE customer_id < 5000 OR customer_id > 8000;

LIKE Condition
The LIKE condition allows you to use wildcards to perform pattern matching in a query.

 The LIKE condition is used in the WHERE clause of a SELECT, INSERT, UPDATE, or DELETE

statement.

Syntax

expression LIKE pattern [ESCAPE 'escape_character']

Here, expression: A character expression such as a column or field.

 pattern: A character expression that contains pattern matching. The wildcards that you

 can choose from are:

Wildcard Explanation

% Allows you to match any string of any length (including zero length)

_ Allows you to match on a single character

ESCAPE 'escape_character' :Optional. It allows you to pattern match on literal instances of a

wildcard character such as % or _.

Example - Using % Wildcard in the LIKE Condition

Let's explain how the % wildcard works in the LIKE condition.

Remember that the % wildcard matches any string of any length (including zero length).

In this first example, we want to find all of the records in the customers table where the

customer's last_name begins with 'J'.

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers WHERE last_name LIKE 'J%' ORDER BY last_name;

There will be 2 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

9000 Johnson Derek techonthenet.com

This example returns the records in the customers table where the last_name starts with 'J'. As

you can see, the records for the last names Jackson and Johnson have been returned.

Using Multiple % Wildcards in the LIKE Condition

Using the same customers table with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

Let's try to find all last_name values from the customers table where the last_name contains

the letter 'e'. Enter the following SQL statement:

SELECT last_name FROM customers WHERE last_name LIKE '%e%' ORDER BY last_name;

There will be 3 records selected. These are the results that you should see:

last_name

Anderson

Ferguson

Reynolds

Example - Using _ Wildcard in the LIKE Condition

Remember that _ wildcard is looking for exactly one character, unlike the % wildcard.

Using the categories table with the following data:

category_id category_name

25 Deli

50 Produce

category_id category_name

75 Bakery

100 General Merchandise

125 Technology

Let's try to find all records from the categories table where the category_id is 2-digits long and

ends with '5'.

Enter the following SQL statement:

SELECT * FROM categories WHERE category_id LIKE '_5';

There will be 2 records selected. These are the results that you should see:

category_id category_name

25 Deli

75 Bakery

In this example, there are 2 records that will pattern match - the category_id values 25 and 75.

Notice that the category_id of 125 was not selected because, the _ wilcard matches only on a

single character.

Using Multiple _ Wildcards in the LIKE Condition

If you wanted to match on a 3-digit value that ended with '5', you would need to use

the _ wildcard two times. You could modify your query as follows:

SELECT * FROM categories WHERE category_id LIKE '__5';

Now you will return the category_id value of 125:

category_id category_name

125 Technology

Example - Using the NOT Operator with the LIKE Condition

Next, let's look at an example of how to use the NOT Operator with the LIKE condition.

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

Let's look for all records in the suppliers table where the supplier_name does not contain the

letter 'o'.

Enter the following SQL statement:

SELECT * FROM suppliers WHERE supplier_name NOT LIKE '%o%';

There will be 1 record selected. These are the results that you should see:

supplier_id supplier_name city state

400 Kimberly-Clark Irving Texas

In this example, there is only one record in the suppliers table where the supplier_name does

not contain the letter 'o'.

Example - Using Escape Characters with the LIKE Condition

It is important to understand how to "Escape Characters" when pattern matching.

You can escape % or _ and search for the literal versions instead.

In this example, we a table called test with the following data:

test_id test_value

1 10%

2 25%

3 100

4 99

We could return all records from the test table where the test_value contains the % literal.

Enter the following SQL statement:

SELECT * FROM test WHERE test_value LIKE '%!%%' escape '!';

These are the results that you should see:

test_id test_value

1 10%

2 25%

You could further modify the above example and only return test_values that start with 1 and

contain the % literal.

Enter the following SQL statement:

SELECT * FROM test WHERE test_value LIKE '1%!%%' escape '!';

These are the results that you should see:

test_id test_value

1 10%

SQL: EXISTS Condition
The SQL EXISTS condition is used in combination with a subquery and is considered to be met, if

the subquery returns at least one row. It can be used in a SELECT, INSERT, UPDATE, or DELETE

statement.

Syntax

WHERE EXISTS (subquery);

here, subquery :

• The subquery is a SELECT statement.

• If the subquery returns at least one record in its result set, the EXISTS clause will

evaluate to true and the EXISTS condition will be met.

• If the subquery does not return any records, the EXISTS clause will evaluate to

false and the EXISTS condition will not be met.

Note

• SQL statements that use the EXISTS condition are very inefficient since the sub-query is

rerun for EVERY row in the outer query's table. There are more efficient ways to write

most queries, that do not use the EXISTS condition.

Example - Using EXISTS Condition with the SELECT Statement
In this example, we have a customers table with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

And a table called orders with the following data:

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

Order by
• The ORDER BY keyword is used to sort the result-set in ascending or descending order.

• The ORDER BY keyword sorts the records in ascending order by default.

• To sort the records in descending order, use the DESC keyword.

 Syntax

SELECT column1,column2,.....

FROM table_name

ORDER BY column1,column2... ASC | DESC;

 here, ASC :Optional.

 ASC sorts the result set in ascending order by expression. This is the default

 behavior, if no modifier is provider.

 DESC :Optional. DESC sorts the result set in descending order by expression.

Example - Sorting Results in Ascending Order

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

SELECT * FROM customers ORDER BY last_name;

There will be 6 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

8000 Anderson Paige NULL

6000 Ferguson Samantha bigactivities.com

4000 Jackson Joe techonthenet.com

9000 Johnson Derek techonthenet.com

7000 Reynolds Allen checkyourmath.com

5000 Smith Jane digminecraft.com

OR

SELECT * FROM customers ORDER BY last_name ASC;

Example - Sorting Results in descending order
In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT * FROM suppliers WHERE supplier_id > 400 ORDER BY supplier_id DESC;

There will be 5 records selected. These are the results that you should see:

supplier_id supplier_name city state

900 Electronic Arts Redwood City California

800 Flowers Foods Thomasville Georgia

700 Dole Food Company Westlake Village California

600 SC Johnson Racine Wisconsin

500 Tyson Foods Springdale Arkansas

Example - Using both ASC and DESC attributes
In this example, let's use the same products table as the previous example:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

product_id product_name category_id

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT * FROM products WHERE product_id <> 7 ORDER BY category_id DESC, product_name

ASC;

There will be 6 records selected. These are the results that you should see:

product_id product_name category_id

5 Bread 75

4 Apple 50

2 Banana 50

3 Orange 50

1 Pear 50

6 Sliced Ham 25

Group by
• The Group By statement is used for organizing similar data into groups.

• The data is further organized with the help of equivalent function.

• Group by clause is used to group the results of a SELECT query based on one or more

columns.

• It is also used with SQL functions to group the result from one or more tables.

• It means, if different rows in a precise column have the same values, it will arrange

those rows in a group.

o The SELECT statement is used with the GROUP BY clause in the query.

o WHERE clause is placed before the GROUP BY clause.

o ORDER BY clause is placed after the GROUP BY clause.

Syntax :

SELECT expression1, expression2, ... expression_n, function_name(aggregate_expression)

FROM tables

[WHERE conditions]

GROUP BY expression1, expression2, ... expression_n

[ORDER BY expression [ASC | DESC]];

Here

expression1, expression2, ... expression_n :Expressions that are not encapsulated within an

 aggregate function and must be included in the GROUP BY Clause at the end of

 the SQL statement.

aggregate_function: This is an aggregate function such as the SUM, COUNT, MIN, MAX,

 or AVG functions.

aggregate_expression: This is the column or expression that the aggregate_function will

 be used on.

tables : The tables that you wish to retrieve records from. There must be at least one

 table listed in the FROM clause.

WHERE conditions : Optional.

These are conditions that must be met for the records to be selected.

ORDER BY expression: Optional.

 The expression used to sort the records in the result set. If more than one

 expression is provided, the values should be comma separated.

ASC |DESC :Optional.

 ASC sorts the result set in ascending order by expression. This is the default

 behavior, if no modifier is provider.

 DESC sorts the result set in descending order by expression.

Example of Group by in a Statement

Consider the following Emp table.

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

SQL query for the above requirement will be,

SELECT name, age FROM Emp GROUP BY salary

Result will be,

name age

Rohan 34

Shane 29

Anu 22

Example of Group by in a Statement with WHERE clause

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

SELECT name, salary FROM Emp

WHERE age > 25

 GROUP BY salary

Result will be.

name salary

Rohan 6000

Shane 8000

Scott 9000

You must remember that Group By clause will always come at the end of the SQL query, just

like the Order by clause.

Example - Using GROUP BY with the SUM Function

In this example, we have a table called employees with the following data:

employee_number last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

SELECT dept_id, SUM(salary) AS total_salaries

FROM employees

GROUP BY dept_id;

There will be 2 records selected. These are the results that you should see:

dept_id total_salaries

500 119500

501 113000

In this example, we've used the SUM function to add up all of the salaries for each dept_id and

we've aliased the results of the SUM function as total_salaries.

Example - Using GROUP BY with the COUNT function

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT category_id, COUNT(*) AS total_products

FROM products

WHERE category_id IS NOT NULL

GROUP BY category_id

ORDER BY category_id;

There will be 3 records selected. These are the results that you should see:

category_id total_products

25 1

category_id total_products

50 4

75 1

Example - Using GROUP BY with the MIN function

employee_number last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

SELECT dept_id, MIN(salary) AS lowest_salary

FROM employees

GROUP BY dept_id;

There will be 2 records selected. These are the results that you should see:

dept_id lowest_salary

500 57500

501 42000

Example - Using GROUP BY with the MAX function

employee_number last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

SELECT dept_id, MAX(salary) AS highest_salary

FROM employees

GROUP BY dept_id;

There will be 2 records selected. These are the results that you should see:

dept_id highest_salary

500 62000

501 71000

Distinct
• The SQL DISTINCT command is used with SELECT key word to retrieve only distinct or

unique data.

OR

• The SQL DISTINCT clause is used to remove duplicates from the result set of a SELECT

statement.

• In a table, there may be a chance to exist a duplicate value and sometimes we want to

retrieve only unique values. In such scenarios, SQL SELECT DISTINCT statement is used.

Syntax:

SELECT DISTINCT column_name ,column_name

FROM table_name

[WHERE conditions];

HERE,

expressions : The columns or calculations that you wish to retrieve.

tables : The tables that you wish to retrieve records from. There must be at least one table

 listed in the FROM clause.

WHERE conditions : Optional. The conditions that must be met for the records to be selected.

Note

• When only one expression is provided in the DISTINCT clause, the query will return the

unique values for that expression.

• When more than one expression is provided in the DISTINCT clause, the query will

retrieve unique combinations for the expressions listed.

• In SQL, the DISTINCT clause doesn't ignore NULL values. So when using the DISTINCT

clause in your SQL statement, your result set will include NULL as a distinct value.

Example :

Student_Name Gender Mobile_Number HOME_TOWN

Rahul Ojha Male 7503896532 Lucknow

Disha Rai Female 9270568893 Varanasi

Sonoo Jaiswal Male 9990449935 Lucknow

SELECT DISTINCT home_town

FROM students

Now, it will return two rows.

HOME_TOWN

Lucknow

Varanasi

Example - Finding Unique Values in a Column

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

SELECT DISTINCT state FROM suppliers ORDER BY state;

There will be 6 records selected. These are the results that you should see:

state

Arkansas

California

Georgia

Texas

Washington

Wisconsin

Example - Finding Unique Values in Multiple Columns

Using the same suppliers table from the previous example, enter the following SQL statement:

SELECT DISTINCT city, state FROM suppliers ORDER BY city, state;

There will be 8 records selected. These are the results that you should see:

city state

Irving Texas

Mountain View California

Racine Wisconsin

Redmond Washington

Redwood City California

Springdale Arkansas

Thomasville Georgia

Westlake Village California

Example - How the DISTINCT Clause handles NULL Values

In this example, we have a table called products with the following data:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

Now let's select the unique values from the category_id field which contains a NULL value.

SELECT DISTINCT category_id FROM products ORDER BY category_id;

There will be 4 records selected. These are the results that you should see:

category_id

NULL

25

category_id

50

75

5.1.4 Use of Alias

• SELECT AS is used to assign temporary names to table or column name or both.

• This is known as creating Alias.

Why use Alias in SQL?

1. To reduce the amount of time to query by temporary replacing the complex & long table and

column names with simple & short names.

2. This method is also used to protect the column names of the databases by not showing the

real column names on the screen.

3. Alias are useful when we are working with JOIN operations or aggregate functions such as

COUNT, SUM etc.

Alias Facts

1. An alias only temporary renames the column or table name, it lasts for the duration of select

query. The changes to the names are not permanent.

2. This technique of creating alias is generally used by DBA (Database Administrators) or

Database users.

3. The temporary table name is also called correlation name.

Syntax:

column_name [AS] alias_name

OR

table_name [AS] alias_name

Here, column_name : The original name of the column that you wish to alias.

 table_name : The original name of the table that you wish to alias.

 alias_name : The temporary name to assign.

Note

• If the alias_name contains spaces, you must enclose the alias_name in quotes.

• It is acceptable to use spaces when you are aliasing a column name. However, it is not

generally good practice to use spaces when you are aliasing a table name.

• The alias_name is only valid within the scope of the SQL statement.

 Alias Example

Table: STUDENT

STUDENT_ID
STUDENT_NAME STUDENT_AGE STUDENT_ADDRESS

1001 Negan 29 Noida

1002 Sirius 28
Delhi

1003 Ron 28
Delhi

1004 Luna 30 Agra

Query :

SELECT STUDENT_ID AS ID, STUDENT_NAME AS NAME, STUDENT_ADDRESS ADDRESS FROM

STUDENT;

Result:

ID NAME ADDRESS

----- ------ -------

1001 Negan Noida

1002 Sirius Delhi

1003 Ron Delhi

1004 Luna Agra

Example - How to Alias a Column Name

Generally, aliases are used to make the column headings in your result set easier to read.

Most commonly, you will alias a column when using an aggregate function such as MIN, MAX,

AVG, SUM or COUNT in your query.

Let's look at an example of how to use to alias a column name in SQL.

In this example, we have a table called employees with the following data:

employee_number last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

SELECT dept_id, COUNT(*) AS total

FROM employees

GROUP BY dept_id;

There will be 2 records selected. These are the results that you should see:

dept_id total

500 2

501 2

In this example, we've aliased the COUNT(*) field as total. As a result, total will display as the

heading for the second column when the result set is returned. Because our alias_name did not

include any spaces, we are not required to enclose the alias_name in quotes.

5.2 Constraints (Table level and Attribute Level)

• Constraints are the rules that we can apply on the type of data in a table.

• SQL Constraints are rules used to limit the type of data that can go into a table, to maintain the

accuracy and integrity of the data inside table.

• Constraints can be divided into the following two types,

1. Column level constraints: Limits only column data.

2. Table level constraints: Limits whole table data.

• Constraints are used to make sure that the integrity of data is maintained in the database.

• Following are the most used constraints that can be applied to a table.

• NOT NULL : Ensures that a column cannot have a NULL value

• UNIQUE : Ensures that all values in a column are different

• PRIMARY KEY : A combination of a NOT NULL and UNIQUE. Uniquely identifies each row

 in a table

• FOREIGN KEY : Uniquely identifies a row/record in another table

• CHECK: Ensures that all values in a column satisfies a specific condition

• DEFAULT : Sets a default value for a column when no value is specified

NOT NULL:

• NOT NULL constraint makes sure that a column does not hold NULL value.

• When we don’t provide value for a particular column while inserting a record into a

table, it takes NULL value by default.

• By specifying NULL constraint, we can be sure that a particular column(s) cannot have

NULL values.

Example 1:

CREATE TABLE STUDENT(ROLL_NO INT NOT NULL,STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

STU_ADDRESS VARCHAR (235),

PRIMARY KEY (ROLL_NO)

);

Example 2:

CREATE TABLE Persons (ID int NOT NULL, LastName varchar(255) NOT NULL,

 FirstName varchar(255) NOT NULL, Age int);

CHECK:

• Using the CHECK constraint we can specify a condition for a field, which should be

satisfied at the time of entering values for this field.

• For example, the below query creates a table Student and specifies the condition for the

field AGE as (AGE >= 18).

Example 1:

CREATE TABLE Student(ID int(6) NOT NULL,NAME varchar(10) NOT NULL,AGE int NOT NULL

CHECK (AGE >= 18));

Example 2:

CREATE table Student(s_id int NOT NULL CHECK(s_id > 0),

Name varchar(60) NOT NULL, Age int);

 The above query will restrict the s_id value to be greater than zero.

DEFAULT

• The DEFAULT constraint is used to provide a default value for a column while inserting a

record into a table.

• The default value will be added to all new records IF no other value is specified.

• That is, if at the time of entering new records in the table if the user does not specify

any value for these fields then the default value will be assigned to them.

• For example, the below query will create a table named Student and specify the default

value for the field AGE as 18.

EXAMPLE 1:

CREATE TABLE Student

(

ID int(6) NOT NULL,

NAME varchar(10) NOT NULL,

AGE int DEFAULT 18

);

EXAMPLE 2:

CREATE TABLE STUDENT(ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

EXAM_FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (35) ,

PRIMARY KEY (ROLL_NO));

UNIQUE

• UNIQUE constraint ensures that a field or column will only have unique values that is

columns are different.

• A UNIQUE constraint field will not have duplicate data. This constraint can be applied at

column level or table level.

• This constraint helps to uniquely identify each row in the table. i.e. for a particular

column, all the rows should have unique values.

• We can have more than one UNIQUE columns in a table.

• Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for

a column or set of columns.

• A PRIMARY KEY constraint automatically has a UNIQUE constraint.

• However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY

constraint per table.

• For example, the below query creates a tale Student where the field ID is specified as

UNIQUE. i.e, no two students can have the same ID. Unique constraint in detail.

EXAMPLE 1:

CREATE TABLE Student (ID int(6) NOT NULL UNIQUE,NAME varchar(10),ADDRESS varchar(20));

Using UNIQUE constraint after Table is created (Column Level)

ALTER TABLE Student ADD UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have unique value.

Example:

Here we are setting up the UNIQUE Constraint for two columns: STU_NAME & STU_ADDRESS.

which means these two columns cannot have duplicate values.

Note: STU_NAME column has two constraints (NOT NULL and UNIQUE both) setup.

CREATE TABLE STUDENTS(ROLL_NO INT NOT NULL,

 STU_NAME VARCHAR (35) NOT NULL UNIQUE,

 STU_AGE INT NOT NULL,

 STU_ADDRESS VARCHAR (35) UNIQUE,

 PRIMARY KEY (ROLL_NO));

Primary Key

• Primary Key is a field which uniquely identifies each row in the table.

• If a field in a table as primary key, then the field will not be able to contain NULL values

as well as all the rows should have unique values for this field.

• So, in other words we can say that this is combination of NOT NULL and UNIQUE

constraints.

EXAMPLE 1:

• A table can have only one field as primary key.Below query will create a table named

Student and specifies the field ID as primary key.

CREATE TABLE Student (ID int(6) NOT NULL UNIQUE, NAME varchar(10),

 ADDRESS varchar(20), PRIMARY KEY(ID)

);

Using PRIMARY KEY constraint at Table Level

CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);

The above command will creates a PRIMARY KEY on the s_id.

Using PRIMARY KEY constraint at Column Level

ALTER table Student ADD PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id.

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)

);

SQL PRIMARY KEY on ALTER TABLE

To create a PRIMARY KEY constraint on the "ID" column when the table is already created, use

the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD PRIMARY KEY (ID);

Foreign Key

• Foreign Key is a field in a table which uniquely identifies each row of a another table.

• That is, this field points to primary key of another table.

• This usually creates a kind of link between the tables.

• The table containing the foreign key is called the child table, and the table containing

the candidate key is called the referenced or parent table.

Consider the two tables as shown below:

Orders Table :

O_ID ORDER_NO C_ID

1 2253 3

2 3325 3

3 4521 2

4 8532 1

Customers Table :

C_ID NAME ADDRESS

1 RAMESH DELHI

2 SURESH NOIDA

3 DHARMESH GURGAON

• As we can see clearly that the field C_ID in Orders table is the primary key in Customers

table, i.e. it uniquely identifies each row in the Customers table.

• Therefore, it is a Foreign Key in Orders table.

Using FOREIGN KEY constraint at Table Level

CREATE TABLE Orders (Order_ID int NOT NULL,ORDER_NO int NOT NULL,

 C_ID int,

 PRIMARY KEY (O_ID),

 FOREIGN KEY (C_ID) REFERENCES Customers(C_ID)

)

Using FOREIGN KEY constraint at Column Level

ALTER table Order ADD FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

On Delete Cascade

• ON DELETE CASCADE clause in is used to automatically remove the matching records

from the child table when we delete the rows from the parent table.

• It is a kind of referential action related to the foreign key.

• Suppose we have created two tables with a FOREIGN KEY in a foreign key relationship,

making both tables a parent and child.

• Next, we define an ON DELETE CASCADE clause for one FOREIGN KEY that must be set

for the other to succeed in the cascading operations.

• If the ON DELETE CASCADE is defined for one FOREIGN KEY clause only, then cascading

operations will throw an error.

What is On Delete Cascade clause of foreign key?

On Delete Cascade as the name suggests deletes the dependent column entry in child table

when there is any attempt of deleting the corresponding value in Parent table.

You can define foreign key with ON DELETE CASCADE clause either using create table or using

alter table statement.

Example of On Delete Cascade Clause

We will again define two tables with the name as Authors and Books.

Authors will be our parent table with two columns author_id and author_name.

We will use author_id column as reference column for our foreign key constraint thus it’s

mandatory for us to define this column either as primary key or unique key.

Please read about Foreign Key for more information.

Let’s create our parent table Authors –

CREATE TABLE author

(

PRIMARY KEY, athr_aid_pk CONSTRAINT NUMBER(3) author_id

VARCHAR2(30) author_name

);

Read How To Define Primary Key Using Create Table

Now we will create our child table called Books. Child table books will consist of 3 columns –

book_id, book_title and book_author_id. We will define foreign key on book_author_id

column.

CREATE TABLE books

(

NUMBER(3), book_id

VARCHAR2(30), book_title

NUMBER(3), book_price

 ON DELETE CASCADE author(author_id) REFERENCES bok_ai_fk CONSTRAINT

NUMBER(3) book_author_id

);

Here we have our child table. In this table the column book_author_id will serve as the foreign

key.

 If you will see the foreign key definition of this column then you will notice that at the end of

the foreign key definition we specified our clause which is “On Delete Cascade”.

This is the concept behind On Delete Cascade clause in brief. You can watch my tutorial on the

same for some practical examples.

Also, please do share it with your friends and help me spread the word. Thank you & have a

great day!

Types of keys in DBMS
1. Primary Key – A primary is a column or set of columns in a table that uniquely identifies

tuples (rows) in that table.

2. Super Key – A super key is a set of one of more columns (attributes) to uniquely identify

rows in a table.

3. Candidate Key – A super key with no redundant attribute is known as candidate key

4. Alternate Key – Out of all candidate keys, only one gets selected as primary key,

remaining keys are known as alternate or secondary keys.

5. Composite Key – A key that consists of more than one attribute to uniquely identify

rows (also known as records & tuples) in a table is called composite key.

6. Foreign Key – Foreign keys are the columns of a table that points to the primary key of

another table. They act as a cross-reference between tables.

5.3 SQL Functions :

• For doing operations on data sql has many built-in functions, they are categorised in two

categories and further sub-categorised in different seven functions under each category.

• The categories are:

1. Aggregate functions:

These functions are used to do operations from the values of the column and a single value is

returned.

1. AVG()

• Average returns average value after calculating it from values in a numeric column.

Syntax : SELECT AVG(column_name) FROM table_name

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

QUERY : SELECT avg(salary) from Emp;

Result of the above query will be,

avg(salary)

8200

2. COUNT()

• Count returns the number of rows present in the table either based on some condition or

without condition.

Syntax : SELECT COUNT(column_name) FROM table-name

Consider the Emp table as in count() function :

SELECT COUNT(name) FROM Emp WHERE salary = 8000;

Result of the above query will be,

count(name)

2

3. LAST()

• LAST function returns the return last value of the selected column.

Syntax : SELECT LAST(column_name) FROM table-name

Consider the Emp table

SELECT LAST(salary) FROM emp;

Result of the above query will be,

last(salary)

8000

4. FIRST()

• First function returns first value of a selected column

Syntax : SELECT FIRST(column_name) FROM table-name;

Consider the Emp table

SELECT FIRST(salary) FROM Emp;

and the result will be,

first(salary)

9000

5. MAX()

• MAX function returns maximum value from selected column of the table.

Syntax: SELECT MAX(column_name) from table-name;

Consider the Emp table

SELECT MAX(salary) FROM emp;

Result of the above query will be,

MAX(salary)

10000

6. MIN()

• MIN function returns minimum value from a selected column of the table.

Syntax : SELECT MIN(column_name) from table-name;

Consider the following Emp table,

SELECT MIN(salary) FROM emp;

Result will be,

MIN(salary)

6000

7. SUM()

• SUM function returns total sum of a selected columns numeric values.

Syntax: SELECT SUM(column_name) from table-name;

Consider the following Emp table

SELECT SUM(salary) FROM emp;

Result of above query is,

SUM(salary)

41000

2. Scalar functions:

• Scalar functions return a single value from an input value.

• Following are some frequently used Scalar Functions in SQL.

• These functions are based on user input, these too returns single value.

1. UCASE()

• UCASE function is used to convert value of string column to Uppercase characters.

Syntax : SELECT UCASE(column_name) from table-name;

Consider the following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SELECT UCASE(name) FROM emp;

Result is,

UCASE(name)

ANU

SHANE

ROHAN

SCOTT

TIGER

2. LCASE()

• LCASE function is used to convert value of string columns to Lowecase characters.

Syntax : SELECT LCASE(column_name) FROM table-name;

Consider the following Emp table

SELECT LCASE(name) FROM emp;

Result will be,

LCASE(name)

anu

shane

rohan

scott

tiger

3. MID()

• MID function is used to extract substrings from column values of string type in a table.

Syntax: SELECT MID(column_name, start, length) from table-name;

Consider the following Emp table

SELECT MID(name,2,2) FROM emp;

Result will come out to be,

MID(name,2,2)

nu

ha

oh

co

ig

4. ROUND()

• ROUND function is used to round a numeric field to number of nearest integer. It is used on

Decimal point values.

Syntax : SELECT ROUND(column_name, decimals) from table-name;

 Consider the following Emp table

SELECT ROUND(salary) from emp;

Result will be,

ROUND(salary)

9001

8001

6000

10000

8000

Let's take another table

Students-Table

5. LEN()

• The LEN() function returns the length of the value in a text field.

Syntax : SELECT LENGTH(column_name) FROM table_name;

Queries:

Fetching length of names of students from Students table.

SELECT LENGTH(NAME) FROM Students;

Result:

NAME

5

6

6

7

3

6. NOW()

• The NOW() function returns the current system date and time.

Syntax: SELECT NOW() FROM table_name;

Queries:

Fetching current system time.

SELECT NAME, NOW() AS DateTime FROM Students;

Result:

NAME DateTime

HARSH 1/13/2017 1:30:11 PM

SURESH 1/13/2017 1:30:11 PM

PRATIK 1/13/2017 1:30:11 PM

DHANRAJ 1/13/2017 1:30:11 PM

RAM 1/13/2017 1:3

The LEN() function returns the length of the value in a text field.

SELECT LENGTH(column_name) FROM table_name;

Fetching length of names of students from Students table.

LENGTH(NAME) FROM Students;

The NOW() function returns the current system date and time.

SELECT NOW() FROM table_name;

Fetching current system time.

SELECT NAME, NOW() AS DateTime FROM Students;

1/13/2017 1:30:11 PM

1/13/2017 1:30:11 PM

1/13/2017 1:30:11 PM

1/13/2017 1:30:11 PM

2017 1:30:11 PM

7. FORMAT()

• The FORMAT() function is used to format how a field is to be displayed.

Syntax: SELECT FORMAT(column_name,format) FROM table_name;

Queries:

Formatting current date as ‘YYYY-MM-DD’.

SELECT NAME, FORMAT(Now(),'YYYY-MM-DD') AS Date FROM Students;

Result:

NAME Date

HARSH 2017-01-13

SURESH 2017-01-13

PRATIK 2017-01-13

DHANRAJ 2017-01-13

RAM 2017-01-13

5.4 Creating sequence

• In Oracle, you can create an auto number field by using sequences.

• A sequence is an object in Oracle that is used to generate a number sequence.

• This can be useful when you need to create a unique number to act as a primary key.

• The value can have maximum of 38 digits.

• A sequence can be defined to:

o Generate numbers in ascending or descending order.

o Provide intervals between numbers.

• Caching of sequence numbers in memory to speed up their availability.

• A sequence is an independent object and can be used with any table that requires its output:

• Creating Sequences

• Minimum information required for generating number using a sequence is:

• The starting number

• The maximum number that can be generated by a sequence.

• The increment value for generating the next number.

Syntax:

CREATE SEQUENCE sequence_name

[INCREMENT BY <IntegerValue>

START WITH <IntegerValue>

MINVALUE <IntegerValue> / NOMINVALUE

MAXVALUE <IntegerValue> / NOMAXVALUE

CYCLE/NOCYCLE

CACHE <IntegerValue> / NOCACHE

ORDER/NOORDER]

Here,

• Sequence is always given a name so that it can be referenced later when required.

• INCREMENT BY : Specifies interval between sequence numbers. Can be positive or negative

value but not zero. If omitted the default value is 1.

• START WITH : Specifies first sequence number. Default for ascending sequence is 1 and

descending sequence is –1.

• MINVALUE: Specifies the sequence minimum value.

• NOMINVALUE: Specifies 1 for an ascending sequence and -10^26 for a descending sequence.

• MAXVALUE: Specifies the sequence maximum value.

• NOMAXVALUE: Specifies maximum of a 10^27 for an ascending sequence and –1 for a

descending sequence.

• CYCLE: Specifies sequence continues to generate repeat values after reaching either its

maximum value.

• NOCYCLE: Specifies sequence cannot generate more values after reaching the maximum

value.

• CACHE: Specifies how many values of a sequence Oracle preallocates and keeps in memory

for faster access. The minimum value for this is two.

• NOCACHE: Specifies that values of a sequence are not pre-allocated.

• ORDER: Guarantees that sequence number are generated in the order of request.Only

necessary if using Parallel server in parallel mode option. In exclusive mode option a

sequence always generates numbers in order.

• NOORDER : By default. Does not guarantee that sequence number are generated in the order

of request. Only necessary if using Parallel server in parallel mode option.

• Example :

SQL> CREATE SEQUENCE my_seq INCREMENT BY 1 START WITH 1 MINVALUE 1

MAXVALUE 999 CYCLE;

Sequence created.

SQL> SELECT my_seq.NEXTVAL FROM DUAL;

NEXTVAL

1

It DISPLAYS THE NEXTVALUE HELD IN CACHE.

• Following example explains how to access a sequence and its generated value in the

INSERT statement.

SQL> INSERT INTO emp VALUES (myseq.nextval,’JACK’,’MANAGER’,2850,40)

1 row created.

SQL> SELECT my_seq.CURRVAL FROM DUAL;

CURRVAL

1

• IT DISPLAYS THE CURRENT VALUE IN THE SEQUENCE.

SQL> SELECT my_seq.NEXTVAL FROM DUAL;

NEXTVAL

2

ALTERING A Sequence:

• A Sequence once created can be altered by following syntax:

ALTER SEQUENCE sequence_name

[INCREMENT BY <IntegerValue>

MINVALUE <IntegerValue> / NOMINVALUE

MAXVALUE <IntegerValue> / NOMAXVALUE

CYCLE/NOCYCLE

CACHE <IntegerValue> / NOCACHE

ORDER/NOORDER]

The start value of a sequence cannot be altered.

• Example:

SQL> ALTER SEQUENCE my_seq INCREMENT BY 2 CACHE 30;

• Sequence altered

SQL> SELECT my_seq.NEXTVAL FROM DUAL;

NEXTVAL

4

DROPPING A Sequence:

• A sequence can be dropped as follows:

DROP SEQUENCE <SequenceName>;

• Example:

SQL> DROP SEQUENCE my_seq;

Sequence dropped.

5.5 Views :

• In SQL, a view is a virtual table based on the result-set of an SQL statement.

• A view contains rows and columns, just like a real table. The fields in a view are fields

from one or more real tables in the database.

• You can add SQL functions, WHERE, and JOIN statements to a view and present the data

as if the data were coming from one single table.

• The table on which view is based is described in FROM clause of SELECT statement

• and the table is called the base table.

• View is created on top of the base table. Thus redundant data will not occupy disk

storage.

• It can be queried exactly like queried on a base table.

• But query fired on view will run slowly as compared to base table.

• Some views are Read-Only View used only for looking at table data.

• Others are called Updateable View can be used to Insert, Update or Delete table as

• well as view data.

Why views are created.

• when data security is required.

• when data redundancy is to be kept to the minimum while maintaining data security.

5.5.1 Creating simple view

Syntax

CREATE [OR REPLACE] VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY <Grouping criteria> HAVING <Predicate>

OR REPLACE keyword use to re-create the view if it already exists.

You can use this clause to change the definition of an existing view without dropping, re-

creating and regranting object privileges previously granted on it.

Note: the columns of the table are related to the view using a one-to-one relationship.

SQL CREATE VIEW Examples
sample database selects every product in the "Products" table with a unit price higher than

the average unit price:

CREATE VIEW V_EMP_AVGSAL AS

SELECT EMPNO,ENAME,JOB,SAL

FROM EMP

WHERE SAL>(SELECT AVG(SAL) FROM EMP);

We can query the view above as follows:

SELECT * FROM V_EMP_AVGSAL

SELECTING DATA SET FROM A VIEW

Once view has been created it can be queried exactly like a base table

Syntax:

SELECT COL1,COL2,…. FROM <ViewName>

Now you can query CUSTOMERS_VIEW in similar way as you query

CREATE OR REPLACE VIEW V_EMP AS

SELECT EMPNO,ENAME, JOB,SAL;

SQL > SELECT * FROM V_EMP;

This would produce the following result:

EMPNO ENAME JOB SAL

e1 rohit MANAGER 90000

e2 jaid EXECUTIVE 9000

e3 rohan DIRECTOR 100000

e4 raj MANAGER 130000

e6 krupali MANAGER 330000

Updateable Views:
• View can be used for DML (ie the user can perform the insert,update and delete

operation)

• View on which data manipulation can be done are called updateable views.

• When an updateable view name is given in an DML statement, modifications to data

in the view will be immediately passed to the underlying table(base table).

View to be updateable, it should meet following criterion:

• View defined from single table

• If user wants to INSERT with the help of view, then PRIMARY KEY column(s)and all

NOT NULL columns must be included in the view.

• User can UPDATE or DELETE records with the help of a view even if the PRIMARY KEY

column and NOT NULL column(s) are excluded from view definition.

INSERT USING VIEWS created on single table

Sql> create table t1(name varchar2(10), id number);

Table created.

Sql> select * from t1;

no rows selected

Sql> create view t1_view as select * from t1;

View created.

Sql> insert into t1_view values('a',1);

1 row created.

Sql> select * from t1;

Or

Sql> select * from t1_view;

NAME ID

==== ==

 a 1

UPDATE USING VIEWS created on single table

SQL> update t1_view set name='ajay' where id=1;

1 row updated.

Sql> select * from t1;

Or

Sql> select * from t1_view;

NAME ID

==== ==

 ajay 1

DELETE USING VIEWS created on single table

SQL> delete from t1_view where id=1;

1 row deleted.

Sql> select * from t1;

Or

Sql> select * from t1_view;

no rows selected

FOR VIEWS CREATED FROM MULTIPLE TABLE

• A view can be created from more than one table.

• These tables will be linked by a join specified in the WHERE clause of the View

 definition.

• The behavior of view will vary in operations such as INSERT, UPDATE and DELETE

 depending on the following

→ Whether tables were created using a Referencing clause

→ Whether tables were created without any referencing clause and are

actually standalone tables not related with one another in any way

Views Defined From Multiple Tables (Which have No Referencing Clause)

• If view is created from multiple tables which were not created using any referencing

clause then though the PRIMARY Key column(s) as well as NOT NULL columns are

included in the View definition the view's behavior will be as follow:

• The INSERT, UPDATE or DELETE OPERATION is not allowed.

• If attempted Oracle displays an error message.

• For INSERT/UPDATE

 ERROR at line 1:

 ORA-01779: cannot modify a column which maps to a non key-preserved

table

• For DELETE

ORA-01752: cannot delete from view without exactly one key-preserved table

Views Defined From Multiple Tables (Created With a Referencing Clause)

• If view is created from multiple tables which were created using any referencing

 clause then though the PRIMARY Key column(s) as well as NOT NULL columns are

 included in the View definition, the view will behave as follows:

→ An INSERT operation is not allowed.

→ A DELETE or UPDATE operations do not affect the Master table.

→ The view can be used to MODIFY the columns of the detail table included in

the view.

Example

Consider following tables:

Table Name :EMP

NAME NULL? TYPE

EID NUMBER

ENAME VARCHAR2(20)

JOB VARCHAR2(20)

SAL NUMBER

DEPT NO NUMBER

Table Name : DEPT

NAME NULL? TYPE

DEPTNO NOT NULL NUMBER

DEPTNAME VARCHAR2(14)

LOCATION VARCHAR2(13)

In the above tables there is no referencing clause defined. If view is created as

follows:

CREATE OR REPLACE VIEW MYVIEW

AS SELECT E.EID,E.ENAME,E.SAL,D.DEPTNO,D.LOC

FROM TEMPEMP E, TEMPDEPT D WHERE E.DEPTNO=D.DEPTNO;

• If either of following operation is performed the Oracle will give output as follows:

SQL> insert into myview values(7888,'daisy',1800,10,'chicago');

ERROR at line 1:

ORA-01776: cannot modify more than one base table through a join view

SQL>update myview set SAL=40000 where deptno=10;

4 rows updated

SQL> delete from myview where eid=7369;

1 row deleted

The above delete and modify operation also affects the base table.

Common Restrictions On Updateable Views
For a view to be updateable the view definition must not include:

• Aggregate functions.

• DISTINCT, GROUP BY or HAVING clause

• Sub-queries

• Constants, Strings or Value Expressions like SAL * 10

• UNION, INTERSECT or MINUS clause

• If a view is defined from another view, the second view should be updateable

if the user tries to perform any of INSERT, UPDATE, DELETE operation , on view , which is

created from a non-updateable view oracle returns the following error message.

• For INSERT/UPDATE/DELETE

 ORA-01732: Data manipulation operation not legal on this view.

Dropping view.
You can delete a view with the DROP VIEW command.

Syntax

DROP VIEW view_name

Example

DROP VIEW v_empavgsal;

5.5.2 Difference between View and Table

View Table

A view is a database object that allows

generating a logical subset of data from one or

more tables

table is a database object or an entity that

stores the data of a database

The view is a virtual table that is extracted

from a database.

Table is an actual table.

view depends on the table Table is an independent data object.

The view is utilized to query certain information

which is contained in a few distinct tables

The table holds fundamental client information

and holds cases of a characterized object.

 In the view, you will get frequently queried

information.

In the table, changing the information in the

database likewise changes the information

appeared in the view which isn't the

